Publications

2024

Mizrahi, L., Dallo, I., van der Elst, N., Christophersen, A., Spassiani, I., Werner, M. J., Iturrieta, P., Bayona, J.A., Iervolino, I., … , & Wiemer, S. (2024). Developing, Testing, and Communicating Earthquake Forecasts: Current Practices and Future Directions. Reviews of Geophysics, 62, e2023RG000823. https://doi.org/10.1029/2023RG000823

Iturrieta, P., Bayona, J. A., Werner, M. J., Schorlemmer, D., Taroni, M., Falcone, G., Cotton, F., Khawaja, A., Savran, W. H., & Marzocchi, W. (2024). Evaluation of a Decade‐Long Prospective Earthquake Forecasting Experiment in Italy. Seismological Research Letters. https://doi.org/10.1785/0220230247

2023

Bayona, J. A., Savran, W. H., Iturrieta, P., Gerstenberger, M. C., Graham, K. G., Marzocchi, W., Schorlemmer, D., & Werner, M. J. (2023). Are Regionally Calibrated Seismicity Models More Informative than Global Models? Insights from California, New Zealand, and Italy. The Seismic Record, 3 (2): 86–95. https://doi.org/10.1785/0320230006

Khawaja, A. M., Hainzl, S., Schorlemmer, D., Iturrieta, P., Bayona, J. A., Savran, W. H., Werner, M. J. & Marzocchi, W. (2023). Statistical power of spatial earthquake forecast tests. Geophysical Journal International, 233(3), 2053-2066. https://doi.org/10.1093/gji/ggad030

Herrmann, M. and Marzocchi, W. (2023). Maximizing the forecasting skill of an ensemble model. Geophysical Journal International, 234(1), 73–87. 10.1093/gji/ggad020

2022

Khawaja, M. Asim, Schorlemmer, D., Hainzl, S., Iturrieta, P., Savran, W. H., Bayona, J. A., & Werner, M. J. (2022). Multi‐Resolution Grids in Earthquake Forecasting: The Quadtree Approach. Bulletin of the Seismological Society of America, 113(1), 333-347. https://doi.org/10.1785/0120220028

Bayona, J. A., Savran, W. H., Rhoades, D. A., & Werner, M. J. (2022). Prospective evaluation of multiplicative hybrid earthquake forecasting models in California. Geophysical Journal International, 229(3), 1736-1753. https://doi.org/10.1093/gji/ggac018

Husker, A., Werner, M. J., Bayona, J. A., Santoyo, M. & Corona‐Fernandez, R. D., (2022). A Test of the Earthquake Gap Hypothesis in Mexico: The Case of the Guerrero Gap. Bulletin of the Seismological Society of America, 113(1), 468-479. https://doi.org/10.1785/0120220094

Mancini, S., Segou, M., Werner, M. J., Parsons, T., Beroza, G., & Chiaraluce, L. (2022). On the Use of High-Resolution and Deep-Learning Seismic Catalogs for Short-Term Earthquake Forecasts: Potential Benefits and Current Limitations. Journal of Geophysical Research: Solid Earth, 127, e2022JB025202. https://doi.org/10.1029/2022JB025202

Savran, W. H., Bayona, J. A., Iturrieta, P., Asim, K. M., Bao, H., Bayliss, K., Herrmann, M., Schorlemmer, D., Maechling, P. J. & Werner, M. J. (2022). pyCSEP: A python toolkit for earthquake forecast developers. Seismological Research Letters, 93(5), 2858-2870. https://doi.org/10.1785/0220220033

Savran, W. H., Werner, M. J., Schorlemmer, D., & Maechling, P. J. (2022). pyCSEP: A Python Toolkit For Earthquake Forecast Developers, Journal of Open Source Software, 7(69), 3658. https://doi.org/10.21105/joss.03658

Serafini, F., Naylor, M., Lindgren, F., Werner, M. J., & Main, I. G. (2022). Ranking earthquake forecasts using proper scoring rules: binary events in a low probability environment. Geophysical Journal International, 230(2), 1419-1440. https://doi.org/10.1093/gji/ggac124

2021

Mancini, S., M. J. Werner, M. Segou, & B. Baptie (2021). Probabilistic Forecasting of Hydraulic Fracturing‐Induced Seismicity Using an Injection‐Rate Driven ETAS Model. Seismological Research Letters, 92, 3471-3481. https://doi.org/10.1785/0220200454

2020

Bayona, J. A., Savran, W., Strader, A., Hainzl, S., Cotton, F. & Schorlemmer, D. (2020). Two global ensemble seismicity models obtained from the combination of interseismic strain measurements and earthquake-catalogue information. Geophysical Journal International, 224, 1945-1955. https://doi.org/10.1093/gji/ggaa554

Savran, W. H., Werner, M. J., Marzocchi, W., Rhoades, D. A., Jackson, D. D., Milner, K., Field, E., & Michael, A. (2020). Pseudoprospective Evaluation of UCERF3-ETAS Forecasts during the 2019 Ridgecrest Sequence. Bulletin of the Seismological Society of America, 110(4), 1799-1817. https://doi:10.1785/0120200026

Mancini, S., Segou, M., Werner, M. J., & Parsons, T. (2020). The Predictive Skills of Elastic Coulomb Rate-and-State Aftershock Forecasts during the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1736-1751. https://doi:10.1785/0120200028

2019

Mancini, S., Segou, M., Werner, M. J., & Cattania, C. (2019). Improving physics‐based aftershock forecasts during the 2016–2017 Central Italy Earthquake Cascade. Journal of Geophysical Research: Solid Earth, 124 (8), 8626-8643. https://doi.org/10.1029/2019JB017874

2018

Michael, A. J. & Werner, M. J. (2018). Preface to the focus section on the Collaboratory for the Study of Earthquake Predictability (CSEP): New results and future directions. Seismological Research Letters 89(4), 1226-1228. https://doi.org/10.1785/0220180161

Rhoades, D. A., Christophersen, A., Gerstenberger, M. C., Liukis, M., Silva, F., Marzocchi, W., Werner, M. J., & Jordan, T. H. (2018). Highlights from the first ten years of the New Zealand earthquake forecast testing center. Seismological Research Letters, 89(4), 1229-1237. https://doi.org/10.1785/0220180032

Cattania, C., Werner, M.J., Marzocchi, W., Hainzl, S., Rhoades, D., Gerstenberger, M., Liukis, M., Savran, W., Christophersen, A., & Helmstetter A., et al. (2018). The forecasting skill of physics‐based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. Seismological Research Letters, 89(4), 1238-1250. https://doi.org/10.1785/0220180033

News

pyCSEP v0.6.3 is now available on PyPI and conda-forge. Visit the GitHub page for more information.

Recent BlogS