Publications

2023

Khawaja, A. M., Hainzl, S., Schorlemmer, D., Iturrieta, P., Bayona, J. A., Savran, W. H., Werner, M. and Marzocchi, W., 2023. Statistical power of spatial earthquake forecast tests. Geophysical Journal International, 233(3), pp.2053-2066. https://doi.org/10.1093/gji/ggad030

Herrmann, Marcus. and Marzocchi, W. (2023). Maximizing the forecasting skill of an ensemble model. Geophysical Journal International, 234(1), 73–87. doi: 10.1093/gji/ggad020

2022

Khawaja M. Asim, Schorlemmer D., Hainzl, S., Iturrieta, P., Savran, W. H., Bayona, J. A., Werner, M. J.m; Multi‐Resolution Grids in Earthquake Forecasting: The Quadtree Approach. Bulletin of the Seismological Society of America 2022; https://doi.org/10.1785/0120220028

Bayona, J. A., Savran, W. H., Rhoades, D. A., & Werner, M. J. (2022). Prospective evaluation of multiplicative hybrid earthquake forecasting models in California. Geophysical Journal International, 229(3), 1736-1753, https://doi.org/10.1093/gji/ggac018

Husker, A., Werner, M. J., Bayona, J. A., Santoyo, M. and Corona‐Fernandez, R. D., 2022. A Test of the Earthquake Gap Hypothesis in Mexico: The Case of the Guerrero Gap. Bulletin of the Seismological Society of America. doi: https://doi.org/10.1785/0120220094

Mancini, S., Segou, M., Werner, M. J., Parons, T., Beroza, G., & Chiaraluce, L. (2022). On the Use of High-Resolution and Deep-Learning Seismic Catalogs for Short-Term Earthquake Forecasts: Potential Benefits and Current Limitations. Journal of Geophysical Research: Solid Earth, 127, e2022JB025202. https://doi.org/10.1029/2022JB025202

Savran, W. H., Bayona, J. A., Iturrieta, P., Asim, K. M., Bao, H., Bayliss, K., Herrmann, M., Schorlemmer, D., Maechling, P. J. & Werner, M. J. (2022). pyCSEP: A python toolkit for earthquake forecast developers. Seismological Research Letters., https://doi.org/10.1785/0220220033

Savran, W., Werner, M., Schorlemmer, D., and Maechling, P. (2022). pyCSEP: A Python Toolkit For Earthquake Forecast Developers, Journal of Open Source Software, 7(69), 3658, https://doi.org/10.21105/joss.03658

Serafini, F., Naylor, M., Lindgren, F., Werner, M. J., & Main, I. G. (2022). Ranking earthquake forecasts using proper scoring rules: binary events in a low probability environment. Geophysical Journal International 230(2), 1419-1440, https://doi.org/10.1093/gji/ggac124

2021

Mancini, S., M. J. Werner, M. Segou, and B. Baptie (2021). Probabilistic Forecasting of Hydraulic Fracturing‐Induced Seismicity Using an Injection‐Rate Driven ETAS Model, Seismological Research Letters 92 3471-3481. https://doi.org/10.1785/0220200454

2020

Bayona, J. A., W. Savran, A. Strader, S. Hainzl, F. Cotton, and D. Schorlemmer (2020). Two global ensemble seismicity models obtained from the combination of interseismic strain measurements and earthquake-catalogue information, Geophysical Journal International, 224, 1945-1955. https://doi.org/10.1093/gji/ggaa554

Savran, W. H., Werner, M. J., Marzocchi, W., Rhoades, D. A., Jackson, D. D., Milner, K., Field, E., Michael, A. (2020). Pseudoprospective Evaluation of UCERF3-ETAS Forecasts during the 2019 Ridgecrest Sequence. Bulletin of the Seismological Society of America, 110(4), 1799-1817. https://doi:10.1785/0120200026

Mancini, S., Segou, M., Werner, M. J., & Parsons, T. (2020). The Predictive Skills of Elastic Coulomb Rate-and-State Aftershock Forecasts during the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1736-1751. https://doi:10.1785/0120200028

2019

Mancini, S., Segou, M., Werner, M. J., & Cattania, C. (2019). Improving physics‐based aftershock forecasts during the 2016–2017 Central Italy Earthquake Cascade. Journal of Geophysical Research: Solid Earth, 124 (8), 8626-8643

News

pyCSEP v0.6.1 is now available on PyPI and conda-forge. Visit the GitHub page for more information.

Recent BlogS